• LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This survey summarizes key elements of deep learning and its development in speech recognition, computer vision and and natural language processing.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Regt, H. W. Understanding, values, and the aims of science. Phil. Sci. 87, 921–932 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pickstone, J. V. Ways of Knowing: A New History of Science, Technology, and Medicine (Univ. Chicago Press, 2001).

  • Han, J. et al. Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23, 629–639 (2018). This paper introduced a deep neural network architecture that learns the potential energy surface of many-body systems while respecting the underlying symmetries of the system by incorporating group theory.

  • Akiyama, K. et al. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wagner, A. Z. Constructions in combinatorics via neural networks. Preprint at https://arxiv.org/abs/2104.14516 (2021).

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

  • Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021). This paper explores how AI can aid the development of pure mathematics by guiding mathematical intuition.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).This study was the first to demonstrate the ability to predict protein folding structures using AI methods with a high degree of accuracy, achieving results that are at or near the experimental resolution. This accomplishment is particularly noteworthy, as predicting protein folding has been a grand challenge in the field of molecular biology for over 50 years.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bileschi, M. L. et al. Using deep learning to annotate the protein universe. Nat. Biotechnol. 40, 932–937 (2022).

  • Bellemare, M. G. et al. Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 588, 77–82 (2020). This paper describes a reinforcement-learning algorithm for navigating a super-pressure balloon in the stratosphere, making real-time decisions in the changing environment.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deiana, A. M. et al. Applications and techniques for fast machine learning in science. Front. Big Data 5, 787421 (2022).

  • Karagiorgi, G. et al. Machine learning in the search for new fundamental physics. Nat. Rev. Phys. 4, 399–412 (2022).

  • Zhou, C. & Paffenroth, R. C. Anomaly detection with robust deep autoencoders. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 665–674 (2017).

  • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kasieczka, G. et al. The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys. 84, 124201 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Govorkova, E. et al. Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider. Nat. Mach. Intell. 4, 154–161 (2022).

    Article 

    Google Scholar
     

  • Chamberland, M. et al. Detecting microstructural deviations in individuals with deep diffusion MRI tractometry. Nat. Comput. Sci. 1, 598–606 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafique, M. et al. Delegated regressor, a robust approach for automated anomaly detection in the soil radon time series data. Sci. Rep. 10, 3004 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastore, V. P. et al. Annotation-free learning of plankton for classification and anomaly detection. Sci. Rep. 10, 12142 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naul, B. et al. A recurrent neural network for classification of unevenly sampled variable stars. Nat. Astron. 2, 151–155 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lee, D.-H. et al. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In ICML Workshop on Challenges in Representation Learning (2013).

  • Zhou, D. et al. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16, 321–328 (2003).

  • Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jablonka, K. M. et al. Bias free multiobjective active learning for materials design and discovery. Nat. Commun. 12, 2312 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roussel, R. et al. Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning. Nat. Commun. 12, 5612 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratner, A. J. et al. Data programming: creating large training sets, quickly. In Advances in Neural Information Processing Systems 29, 3567–3575 (2016).

  • Ratner, A. et al. Snorkel: rapid training data creation with weak supervision. In International Conference on Very Large Data Bases 11, 269–282 (2017). This paper presents a weakly-supervised AI system designed to annotate massive amounts of data using labeling functions.

  • Butter, A. et al. GANplifying event samples. SciPost Phys. 10, 139 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brown, T. et al. Language models are few-shot learners. In Advances in Neural Information Processing Systems 33, 1877–1901 (2020).

  • Ramesh, A. et al. Zero-shot text-to-image generation. In International Conference on Machine Learning 139, 8821–8831 (2021).

  • Littman, M. L. Reinforcement learning improves behaviour from evaluative feedback. Nature 521, 445–451 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cubuk, E. D. et al. Autoaugment: learning augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern Recognition 113–123 (2019).

  • Reed, C. J. et al. Selfaugment: automatic augmentation policies for self-supervised learning. In IEEE Conference on Computer Vision and Pattern Recognition 2674–2683 (2021).

  • ATLAS Collaboration et al. Deep generative models for fast photon shower simulation in ATLAS. Preprint at https://arxiv.org/abs/2210.06204 (2022).

  • Mahmood, F. et al. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39, 3257–3267 (2019).

    Article 

    Google Scholar
     

  • Teixeira, B. et al. Generating synthetic X-ray images of a person from the surface geometry. In IEEE Conference on Computer Vision and Pattern Recognition 9059–9067 (2018).

  • Lee, D., Moon, W.-J. & Ye, J. C. Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nat. Mach. Intell. 2, 34–42 (2020).

    Article 

    Google Scholar
     

  • Kench, S. & Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 3, 299–305 (2021).

    Article 

    Google Scholar
     

  • Wan, C. & Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2, 540–550 (2020).

    Article 

    Google Scholar
     

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article 

    Google Scholar
     

  • Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 166 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).This survey provides an introduction to probabilistic machine learning, which involves the representation and manipulation of uncertainty in models and predictions, playing a central role in scientific data analysis.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cogan, J. et al. Jet-images: computer vision inspired techniques for jet tagging. J. High Energy Phys. 2015, 118 (2015).

    Article 

    Google Scholar
     

  • Zhao, W. et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol. 40, 606–617 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brbić, M. et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17, 1200–1206 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18, 194–202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreassen, A. et al. OmniFold: a method to simultaneously unfold all observables. Phys. Rev. Lett. 124, 182001 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2021).

  • Vincent, P. et al. Extracting and composing robust features with denoising autoencoders. In International Conference on Machine Learning 1096–1103 (2008).

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In International Conference on Learning Representations (2014).

  • Eraslan, G. et al. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  • Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In ICML Workshop on Unsupervised and Transfer Learning (2012).

  • Detlefsen, N. S., Hauberg, S. & Boomsma, W. Learning meaningful representations of protein sequences. Nat. Commun. 13, 1914 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bronstein, M. M. et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag. 34, 18–42 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao, Z. et al. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry. Proc. Natl Acad. Sci. USA 119, e2205221119 (2022).

  • Bogatskiy, A. et al. Symmetry group equivariant architectures for physics. Preprint at https://arxiv.org/abs/2203.06153 (2022).

  • Bronstein, M. M. et al. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).

  • Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).

  • Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (2018).

  • Hamilton, W. L., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 30, 1024–1034 (2017).

  • Gilmer, J. et al. Neural message passing for quantum chemistry. In International Conference on Machine Learning 1263–1272 (2017).

  • Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).

  • Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In International Conference on Machine Learning 9323–9332 (2021). This study incorporates principles of physics into the design of neural models, advancing the field of equivariant machine learning.

  • Thomas, N. et al. Tensor field networks: rotation-and translation-equivariant neural networks for 3D point clouds. Preprint at https://arxiv.org/abs/1802.08219 (2018).

  • Finzi, M. et al. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In International Conference on Machine Learning 3165–3176 (2020).

  • Fuchs, F. et al. SE(3)-transformers: 3D roto-translation equivariant attention networks. In Advances in Neural Information Processing Systems 33, 1970-1981 (2020).

  • Zaheer, M. et al. Deep sets. In Advances in Neural Information Processing Systems 30, 3391–3401 (2017). This paper is an early study that explores the use of deep neural architectures on set data, which consists of an unordered list of elements.

  • Cohen, T. S. et al. Spherical CNNs. In International Conference on Learning Representations (2018).

  • Gordon, J. et al. Permutation equivariant models for compositional generalization in language. In International Conference on Learning Representations (2019).

  • Finzi, M., Welling, M. & Wilson, A. G. A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine Learning 3318–3328 (2021).

  • Dijk, D. V. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatfield, P. W. et al. The data-driven future of high-energy-density physics. Nature 593, 351–361 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40, 254–261 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • DeZoort, G. et al. Graph neural networks at the Large Hadron Collider. Nat. Rev. Phys. 5, 281–303 (2023).

  • Liu, S. et al. Pre-training molecular graph representation with 3D geometry. In International Conference on Learning Representations (2022).

  • The LIGO Scientific Collaboration. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    Article 

    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goenka, S. D. et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat. Biotechnol. 40, 1035–1041 (2022).

  • Bengio, Y. et al. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems 19, 153–160 (2006).

  • Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Devlin, J. et al. BERT: pre-training of deep bidirectional transformers for language understanding. In North American Chapter of the Association for Computational Linguistics 4171–4186 (2019).

  • Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

  • Elnaggar, A. et al. ProtTrans: rowards cracking the language of lifes code through self-supervised deep learning and high performance computing. In IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

  • Hie, B. et al. Learning the language of viral evolution and escape. Science 371, 284–288 (2021).This paper modeled viral escape with machine learning algorithms originally developed for human natural language.

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Biswas, S. et al. Low-N protein engineering with data-efficient deep learning. Nat. Methods 18, 389–396 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferruz, N. & Höcker, B. Controllable protein design with language models. Nat. Mach. Intell. 4, 521–532 (2022).

  • Hsu, C. et al. Learning inverse folding from millions of predicted structures. In International Conference on Machine Learning 8946–8970 (2022).

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021). Inspired by AlphaFold2, this study reported RoseTTAFold, a novel three-track neural module capable of simultaneously processing protein’s sequence, distance and coordinates.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Lin, T.-S. et al. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent. Sci. 5, 1523–1531 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krenn, M. et al. SELFIES and the future of molecular string representations. Patterns 3, 100588 (2022).

  • Flam-Shepherd, D., Zhu, K. & Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun. 13, 3293 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skinnider, M. A. et al. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 3, 759–770 (2021).

    Article 

    Google Scholar
     

  • Chithrananda, S., Grand, G. & Ramsundar, B. ChemBERTa: large-scale self-supervised pretraining for molecular property prediction. In Machine Learning for Molecules Workshop at NeurIPS (2020).

  • Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tetko, I. V. et al. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat. Commun. 11, 5575 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwaller, P. et al. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 3, 144–152 (2021).

    Article 

    Google Scholar
     

  • Kovács, D. P., McCorkindale, W. & Lee, A. A. Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias. Nat. Commun. 12, 1695 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesciullesi, G. et al. Transfer learning enables the molecular transformer to predict regio-and stereoselective reactions on carbohydrates. Nat. Commun. 11, 4874 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30, 5998–6008 (2017). This paper introduced the transformer, a modern neural network architecture that can process sequential data in parallel, revolutionizing natural language processing and sequence modeling.

  • Mousavi, S. M. et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 11, 3952 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations on protein function. In Advances in Neural Information Processing Systems 34, 29287–29303 (2021).

  • Kamienny, P.-A. et al. End-to-end symbolic regression with transformers. In Advances in Neural Information Processing Systems 35, 10269–10281 (2022).

  • Jaegle, A. et al. Perceiver: general perception with iterative attention. In International Conference on Machine Learning 4651–4664 (2021).

  • Chen, L. et al. Decision transformer: reinforcement learning via sequence modeling. In Advances in Neural Information Processing Systems 34, 15084–15097 (2021).

  • Dosovitskiy, A. et al. An image is worth 16×16 words: transformers for image recognition at scale. In International Conference on Learning Representations (2020).

  • Choromanski, K. et al. Rethinking attention with performers. In International Conference on Learning Representations (2021).

  • Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations (2021).

  • Kovachki, N. et al. Neural operator: learning maps between function spaces. J. Mach. Learn. Res. 24, 1–97 (2023).

  • Russell, J. L. Kepler’s laws of planetary motion: 1609–1666. Br. J. Hist. Sci. 2, 1–24 (1964).

    Article 

    Google Scholar
     

  • Huang, K. et al. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol. 18, 1033–1036 (2022).

  • Guimerà, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. 6, eaav6971 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01349-8 (2023).

  • Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016). This paper proposes using a black-box AI predictor to accelerate high-throughput screening of molecules in materials science.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • The NNPDF Collaboration Evidence for intrinsic charm quarks in the proton. Nature 606, 483–487 (2022).

    Article 

    Google Scholar
     

  • Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janet, J. P. et al. Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization. ACS Cent. Sci. 6, 513–524 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacon, F. Novum Organon Vol. 1620 (2000).

  • Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, B. K. et al. Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients. In International Conference on Learning Representations (2020).

  • Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019). This paper describes a reinforcement-learning algorithm for navigating molecular combinatorial spaces, and it validates generated molecules using wet-lab experiments.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. et al. Graph convolutional policy network for goal-directed molecular graph generation. In Advances in Neural Information Processing Systems 31, 6412–6422 (2018).

  • Bengio, Y. et al. GFlowNet foundations. Preprint at https://arxiv.org/abs/2111.09266 (2021). This paper describes a generative flow network that generates objects by sampling them from a distribution optimized for drug design.

  • Jain, M. et al. Biological sequence design with GFlowNets. In International Conference on Machine Learning 9786–9801 (2022).

  • Malkin, N. et al. Trajectory balance: improved credit assignment in GFlowNets. In Advances in Neural Information Processing Systems 35, 5955–5967 (2022).

  • Borkowski, O. et al. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat. Commun. 11, 1872 (2020). This study introduced a dynamic programming approach to determine the optimal locations and capacities of hydropower dams in the Amazon Basin, balancing between energy production and environmental impact.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).This study introduced a dynamic programming approach to determine the optimal locations and capacities of hydropower dams in the Amazon basin, achieving a balance between the benefits of energy production and the potential environmental impacts.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pion-Tonachini, L. et al. Learning from learning machines: a new generation of AI technology to meet the needs of science. Preprint at https://arxiv.org/abs/2111.13786 (2021).

  • Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. In International Conference on Machine Learning 1945–1954 (2017). This paper describes a grammar variational autoencoder that generates novel symbolic laws and drug molecules.

  • Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, Z. & Tegmark, M. Machine learning hidden symmetries. Phys. Rev. Lett. 128, 180201 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabbard, H. et al. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nat. Phys. 18, 112–117 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Automating crystal-structure phase mapping by combining deep learning with constraint reasoning. Nat. Mach. Intell. 3, 812–822 (2021).

    Article 

    Google Scholar
     

  • Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

  • Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, T. et al. Differentiable scaffolding tree for molecular optimization. In International Conference on Learning Representations (2021).

  • Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, K. et al. Therapeutics Data Commons: machine learning datasets and tasks for drug discovery and development. In NeurIPS Datasets and Benchmarks (2021). This study describes an initiative with open AI models, datasets and education programmes to facilitate advances in therapeutic science across all stages of drug discovery and development.

  • Dance, A. Lab hazard. Nature 458, 664–665 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018). This paper describes an approach that combines deep neural networks with Monte Carlo tree search to plan chemical synthesis.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W., Raghavan, P. & Coley, C. W. Autonomous platforms for data-driven organic synthesis. Nat. Commun. 13, 1075 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gormley,A. J. & Webb, M. A. Machine learning in combinatorial polymer chemistry. Nat. Rev. Mater. 6, 642–644 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ament, S. et al. Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams. Sci. Adv. 7, eabg4930 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).This paper describes an approach for controlling tokamak plasmas, using a reinforcement-learning agent to command-control coils and satisfy physical and operational constraints.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melnikov, A. A. et al. Active learning machine learns to create new quantum experiments. Proc. Natl Acad. Sci. USA 115, 1221–1226 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics. Nat. Comput. Sci. 2, 20–29 (2022).This paper describes a neural network for reliable uncertainty estimations in molecular dynamics, enabling efficient sampling of high-dimensional free energy landscapes.

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. & Gómez-Bombarelli, R. Coarse-graining auto-encoders for molecular dynamics. npj Comput. Mater. 5, 125 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020).This paper describes a method to learn the wavefunction of quantum systems using deep neural networks in conjunction with variational quantum Monte Carlo.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Em Karniadakis, G. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article 

    Google Scholar
     

  • Li, Z. et al. Physics-informed neural operator for learning partial differential equations. Preprint at https://arxiv.org/abs/2111.03794 (2021).

  • Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021). This paper describes an approach to accelerating computational fluid dynamics by training a neural network to interpolate from coarse to fine grids and generalize to varying forcing functions and Reynolds numbers.

  • Ji, W. et al. Stiff-PINN: physics-informed neural network for stiff chemical kinetics. J. Phys. Chem. A 125, 8098–8106 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. D., Azizzadenesheli, K. & Ross, Z. E. EikoNet: solving the Eikonal equation with deep neural networks. IEEE Trans. Geosci. Remote Sens. 59, 10685–10696 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Waheed, U. B. et al. PINNeik: Eikonal solution using physics-informed neural networks. Comput. Geosci. 155, 104833 (2021).

    Article 

    Google Scholar
     

  • Chen, R. T. Q. et al. Neural ordinary differential equations. In Advances in Neural Information Processing Systems 31, 6572–6583 (2018). This paper established a connection between neural networks and differential equations by introducing the adjoint method to learn continuous-time dynamical systems from data, replacing backpropagation.

  • Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). This paper describes a deep-learning approach for solving forwards and inverse problems in nonlinear partial differential equations and can find solutions to differential equations from data.

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lu, L. et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).

    Article 

    Google Scholar
     

  • Brandstetter, J., Worrall, D. & Welling, M. Message passing neural PDE solvers. In International Conference on Learning Representations (2022).

  • Noé, F. et al. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019). This paper presents an efficient sampling algorithm using normalizing flows to simulate equilibrium states in many-body systems.

  • Rezende, D. & Mohamed, S. Variational inference with normalizing flows. In International Conference on Machine Learning 37, 1530–1538, (2015).

  • Dinh, L., Sohl-Dickstein, J. & Bengio, S. Density estimation using real NVP. In International Conference on Learning Representations (2017).

  • Nicoli, K. A. et al. Estimation of thermodynamic observables in lattice field theories with deep generative models. Phys. Rev. Lett. 126, 032001 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 121601 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrié, M., Rotskoff, G. M. & Vanden-Eijnden, E. Adaptive Monte Carlo augmented with normalizing flows. Proc. Natl Acad. Sci. USA 119, e2109420119 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jasra, A., Holmes, C. C. & Stephens, D. A. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Stat. Sci. 20, 50–67 (2005).

  • Bengio, Y. et al. Better mixing via deep representations. In International Conference on Machine Learning 552–560 (2013).

  • Pompe, E., Holmes, C. & Łatuszyński, K. A framework for adaptive MCMC targeting multimodal distributions. Ann. Stat. 48, 2930–2952 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Townshend, R. J. L. et al. ATOM3D: tasks on molecules in three dimensions. In NeurIPS Datasets and Benchmarks (2021).

  • Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brown, N. et al. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59, 1096–1108 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Notin, P. et al. Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval. In International Conference on Machine Learning 16990–17017 (2022).

  • Mitchell, M. et al. Model cards for model reporting. In Conference on Fairness, Accountability, and Transparency220–229 (2019).

  • Gebru, T. et al. Datasheets for datasets. Commun. ACM 64, 86–92 (2021).

    Article 

    Google Scholar
     

  • Bai, X. et al. Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nat. Mach. Intell. 3, 1081–1089 (2021).

    Article 

    Google Scholar
     

  • Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hie, B., Cho, H. & Berger, B. Realizing private and practical pharmacological collaboration. Science 362, 347–350 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377, 172–180 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gysi, D. M. et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci. USA 118, e2025581118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

  • Doerr, S. et al. TorchMD: a deep learning framework for molecular simulations. J. Chem. Theory Comput. 17, 2355–2363 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoenholz, S. S. & Cubuk, E. D. JAX MD: a framework for differentiable physics. In Advances in Neural Information Processing Systems 33, 11428–11441 (2020).

  • Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, 2017).

  • Bengio, Y. et al. A meta-transfer objective for learning to disentangle causal mechanisms. In International Conference on Learning Representations (2020).

  • Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109, 612–634 (2021).

    Article 

    Google Scholar
     

  • Goyal, A. & Bengio, Y. Inductive biases for deep learning of higher-level cognition. Proc. R. Soc. A 478, 20210068 (2022).

  • Deleu, T. et al. Bayesian structure learning with generative flow networks. In Conference on Uncertainty in Artificial Intelligence 518–528 (2022).

  • Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020).

    Article 

    Google Scholar
     

  • Koh, P. W. et al. WILDS: a benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning 5637–5664 (2021).

  • Luo, Z. et al. Label efficient learning of transferable representations across domains and tasks. In Advances in Neural Information Processing Systems 30, 165–177 (2017).

  • Mahmood, R. et al. How much more data do I need? estimating requirements for downstream tasks. In IEEE Conference on Computer Vision and Pattern Recognition 275–284 (2022).

  • Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discovery in the chemical sciences part II: outlook. Angew. Chem. Int. Ed. 59, 23414–23436 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. & Coley, C. W. The synthesizability of molecules proposed by generative models. J. Chem. Inf. Model. 60, 5714–5723 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kogler, R. et al. Jet substructure at the Large Hadron Collider. Rev. Mod. Phys. 91, 045003 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Acosta, J. N. et al. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

  • Alayrac, J.-B. et al. Flamingo: a visual language model for few-shot learning. In Advances in Neural Information Processing Systems 35, 23716–23736 (2022).

  • Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Y. et al. A multi-scale map of cell structure fusing protein images and interactions. Nature 600, 536–542 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Systems 12, 622–635 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stiglic, G. et al. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10, e1379 (2020).

    Article 

    Google Scholar
     

  • Erion, G. et al. A cost-aware framework for the development of AI models for healthcare applications. Nat. Biomed. Eng. 6, 1384–1398 (2022).

  • Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, L. M. et al. Beyond low Earth orbit: biological research, artificial intelligence, and self-driving labs. Preprint at https://arxiv.org/abs/2112.12582 (2021).

  • Gagne, D. J. II et al. Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Weather Rev. 147, 2827–2845 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, P. W. & Liang, P. Understanding black-box predictions via influence functions. In International Conference on Machine Learning 1885–1894 (2017).

  • Mirzasoleiman, B., Bilmes, J. & Leskovec, J. Coresets for data-efficient training of machine learning models. In International Conference on Machine Learning 6950–6960 (2020).

  • Kim, B. et al. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In International Conference on Machine Learning 2668–2677 (2018).

  • Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354–359 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baum, Z. J. et al. Artificial intelligence in chemistry: current trends and future directions. J. Chem. Inf. Model. 61, 3197–3212 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbina, F. et al. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 4, 189–191 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norgeot, B. et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat. Med. 26, 1320–1324 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar